absolute isomorphism

absolute isomorphism
мат.
абсолютный изоморфизм

English-Russian scientific dictionary. 2008.

Игры ⚽ Поможем сделать НИР

Смотреть что такое "absolute isomorphism" в других словарях:

  • Absolute presentation of a group — In mathematics, one method of defining a group is by an absolute presentation.B. Neumann, The isomorphism problem for algebraically closed groups, in: Word Problems, Decision Problems, and the Burnside Problem in Group Theory, Amsterdam London… …   Wikipedia

  • Absolute Galois group — In mathematics, the absolute Galois group GK of a field K is the Galois group of K sep over K , where K sep is a separable closure of K . Alternatively it is the group of all automorphisms of the algebraic closure of K that fix K . The absolute… …   Wikipedia

  • Group isomorphism — In abstract algebra, a group isomorphism is a function between two groups that sets up a one to one correspondence between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two… …   Wikipedia

  • Affine connection — An affine connection on the sphere rolls the affine tangent plane from one point to another. As it does so, the point of contact traces out a curve in the plane: the development. In the branch of mathematics called differential geometry, an… …   Wikipedia

  • Field arithmetic — In mathematics, field arithmetic is a subject that studies the interrelations between arithmetic properties of a ql|field (mathematics)|field and its absolute Galois group.It is an interdisciplinary subject as it uses tools from algebraic number… …   Wikipedia

  • Cartan connection — In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the …   Wikipedia

  • Möbius transformation — Not to be confused with Möbius transform or Möbius function. In geometry, a Möbius transformation of the plane is a rational function of the form of one complex variable z; here the coefficients a, b, c, d are complex numbers satisfying ad − …   Wikipedia

  • Space (mathematics) — This article is about mathematical structures called spaces. For space as a geometric concept, see Euclidean space. For all other uses, see space (disambiguation). A hierarchy of mathematical spaces: The inner product induces a norm. The norm… …   Wikipedia

  • Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… …   Wikipedia

  • Class formation — In mathematics, a class formation is a structure used to organize the various Galois groups and modules that appear in class field theory. They were invented by Emil Artin and John Tate. Contents 1 Definitions 2 Examples of class formations 3 The …   Wikipedia

  • p-adic number — In mathematics, and chiefly number theory, the p adic number system for any prime number p extends the ordinary arithmetic of the rational numbers in a way different from the extension of the rational number system to the real and complex number… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»